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A numerical technique is developed for the study of stress wave propagation in 
axisymmetric layered elastic-plastic solids. Although the theory of wave propagation in 
layered media is well established, analytic solutions of significant problems are possible 
only for linearly elastic casesThe underlying continuum is discretizcd intoafinitenumber 
of discrete points consisting of mass points, at which displacements, velocities, and 
accelerations are defined, and stress points, at which the stress and strain tensors arc 
defined. The equations of motion and the strain-displacement relations can be dcrivcd 
directly from this model and can be shown to be central finite difference analogs of the 
corresponding continuum equations. A noniterative scheme is used to integrate the 
equations of motion of the model numerically. The stability of this numerical scheme 
is investigated in detail. Convergence of the numerical scheme is also demonstrated by 
comparing solutions obtained by decreasing mesh sizes. 

A brief review of the literature [l, 2, 3, 4, 51 readily reveals that the analysis of 
wave motions in layered solid media in two or three dimensions presents some 
analytic difficulties. These difficulties are magnified if the material behavior is 
nonlinear or inelastic. In particular, any analytic solution of elastic-plastic wave 
motions is faced with having to consider the following: 

(1) Moving elastic-plastic boundaries whose positions at a given time are 
not known beforehand. 

(2) Unloading waves that may be generated, giving rise to a moving interface 
between the unloading and plastic regions of the material. 

in consideration of the above difftculties, numerical methods of analysis are 
often the only feasible way to obtain solutions in a form that can be used for 
engineering purposes. Even then, approximations and idealizations of the real 
problem are invariably necessary. Some important numerical methods for deter- 
mining wave motions include those of Alterman and Karal [6], Macnchen and 
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Sack [7], and Wilkins [8]. Ang and Rainer [9] developed a lumped-parameter 
model for studying stress-wave propagation in homogeneous axisymmetric solids, 
however the stability of their numerical scheme was not investigated. In this study, 
essentially the same lumped-parameter model is used for determining wave motions 
in axisymmetric elastic-perfectly-plastic layered solids, and the stability of the 
numerical method is investigated in detail. 

It will be clear from the text that the resulting code is limited to those solids in 
which Hooke’s law governs the stress-strain relations in the elastic range, initiation 
of yielding indicated by the vanishing of an invariant of the stress deviation (von 
Mises yield criterion is used), and the Prandtl-Reuss stress-strain rates relationships 
hold in the plastic range. 

Two examples of practical significance are investigated: 

(i) wave motions in a layered elastic-plastic solid induced by surface blast 
loading; 

(ii) stresses and displacements in the same layered solid induced by sinusoidal 
loading. 

2. THE MATHEMATICAL MODEL 

A mathematically consistent lumped parameter model is used in this study. 
The basic lumped parameter model of an axially symmetric solid can be described 
symbolically as shown in Fig. 1. 

The underlying discrete model can be developed by properly concentrating 
the masses of volumental elements of the continuum at appropriate mass points, 
and defining average strains and stresses for volumental elements at appropriate 
stress points. Displacements, velocities, and accelerations are defined for such a 
model at the mass points, while strain tensors and stress tensors are defined at the 
stress points. Effectively, that material in the volumental element corresponding 
to a stress point is in homogeneous states of stress and strain. 

Basic Relations for Small Displacements 

The components of the strain tensor at an interior stress point, point “c” in 
Fig. 1, can be derived from simple geometrical arguments, as follows: 
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2 to--Ar - 

I%. I. Axisymmetric model in cylindrical coordinates. 

where u and II: denote the displacements in the radial and vertical directions, 
r5 denotes the radius at point 5, and du and dz are the mesh sizes in the radial and 
vertical directions, respectively. It is clear that the relations in (1) are central 
finite difference analogues (at point c) of the components of the strain tensor in 
the theory of small deformations [2], 

(2) 
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Equations of Motion 

Figure 2 shows a volumental element of an interior mass point 1. Considering 
the dynamical equilibrium of this element in both the r and z directions, the 
equations of motion (in the absence of body forces) are 

Volume =i rA@ArAz 
F,(i, jtl) 

FIG. 2. A volumental element of an interior mass point. 

,I,$ 

where 5 is the mass density of the material at mass point 1, ii1 = d2u1/dt2 and 
til = d2w1/dt2 are the accelerations in the r and z directions respectively, and 
cGa, uga, (J,~, and T& are the components of the stress tensor at stress point a. It 
should be observed that by virture of symmetry, url, o/, and T”,, are actually 
equal to o.,~, crOd, and & of stress point d or b. The terms in (3) are again the 
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central finite difference analogs (at point 1) of the corresponding terms of the 
differential equations of motion in cylindrical polar coordinates [2]: 

The significance of the above model may be observed as follows. The model is 
developed on the basis of defining certain average physical quantities of the 
continuum at a finite number of discrete points. On the average, therefore, the 
model can be expected to have the same properties as the idealized continuum. 

Boundary Conditions 

The two types of boundary conditions, namely, stress and displacement boundary 
conditions are readily defined for the model. This can be done by specifying the 
stresses and displacements at the corresponding stress and mass points that are 
on the boundary. In the process of the numerical solution, the stress boundary 
conditions are included in the equations of motion of the appropriate boundary 
mass points, while displacement boundary conditions are included in the strain 
displacement relations for the appropriate stress points. 

3. CONSTITUTIVE RELATIONSHIPS 

In order to simplify the problem mathematically and still retain the basic 
property of irreversibility or inelasticity of a material, the present study assumes 
an elastic-perfectly plastic medium. The general constitutivc relationships for an 
elastic-perfectly-plastic material are extensively available [lo, 11, 121, and the 
constitutive equations for problems with axial symmetry can be obtained. 

Stress Strain Relations in the Elastic Range 

In the elastic range, Hookc’s law may be expressed as follows: 

where X and p are Lame’s constants, 

x = G/(1 + V)( 1 - 24, }L = E/2(1 + Y), 

in which v is Poisson’s ratio and E is Young’s modulus. 

(5) 

(6) 
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Yield Criterion 

The von Mises yield criterion is assumed to determine the initiation of yielding. 
In case of axial symmetry, von Mises condition is 

J2 -_ (1!‘6)[(0, - u$ :. (07 - uJ2 + (oz - aJ] 1 7;z = k02, (7) 

where k,, is the yield limit in simple shear; k, = CS,/V’/~, (TV being the yield stress 
of the material in simple tension. 

Stress-Straii Relations in the Plastic Range 

When .I, 7.:: ku2 and the rate of distortional work I@ is positive, the material 
undergoes irreversible plastic flow. The Prandtl-Reuss stress-strain law is assumed 
to describe the behavior of the material in the plastic range. For the axially sym- 
metric case, the PrandtLReuss stress-strain rate relations take the following 
form [13]: 

{4 = tm4, G-9 

where 

(4 = 14, bo 3 ck2 ) f,,}; { 6) = {i, ) 2, ) i, ) &) (9) 

and the matrix P is symmetric and its elements are defined by 

pii -= K,, + Kl[l - (L”i’/l2k~)], i == I, 2, 3, 

pij L Kc, - (K,,/2)[1 -j- (L’iXj)/bk,“], i,,j- 1,2,3 7 i ,,’ j: 

pd4 = (3&:4)[1 - (Q%,V, (10) 

pi,, -: - KlZ’7ir,.z/4k02, i = 1,2,3, 

where 

K, = E/3(1 - 219, K, = 2</3( 1 -b v), 

22, 77 (20, - ug _- u3), Z2 = = (20, - ur - uz), and 

z3 :-- (2u, - ur - uy). 
(11) 

The rate of distortional work is defined by, 

w = (1,/3)[;Jr +- is& + ;,&J I- ?jrzT,, . (12) 

Hastic Unloading and Reloading 

Whenever J2 = k02 and m < 0, the material is starting to unload from a plastic 
state. Unloading is assumed to bc incrementally elastic, and since the instantaneous 
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stress and strain rates are proportional, the time-rate form of Hooke’s law describes 
the behavior of the material during unloading and on any subsequent reloading 
(where .I? c k,?, Ii/ > 0). The rate form of Hooke’s law is, 

where H is the coefficient matrix in (5). 

4. NUMERICAL TECIINI~UES 

Numerical Irztegration qf Equations of Motion 

Assuming that at a generic time t, all physical quantities, consisting of accelera- 
tions, velocities, displacements, strains: stresses, and the appropriate material 
behavior at all stress and mass points are known, the corresponding quantities 
at the end of time t + dt, where dt is the chosen time increment, may be obtained 
by performing the following sequence of calculations: 

(1) The sequence is started with initial trial accelerations iitfdt and ~i:‘.;~[ 
equal to those obtained using the known components of the stress tensor at time I 
in (3), that is, the accelerations at time t. 

(2) Using the calculated accelerations, the velocities zVt and Ct.-d’ are 
obtained using the following quadrature relations: 

(3) From the displacements and velocities computed in step 2, the strains 
arc obtained by (I), and the strain rates at stress point c, Fig. 1: are defined by 
expressions similar to (1), where the displacements are replaced by the velocities 
ti and zi. 

(4) At the end of each time increment, the yield criterion given by (7) is 
examined at each stress point for initiation of yielding. If the stress point is still 
in the elastic range (Jz < k,*), then the stresses are obtained using (5). A stress 
point is in the plastic region if J2 = kOa and I& > 0, the stress rates are then 
obtained from (g), and the total stresses are obtained by 
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If the condition of von Mises is violated, that is,-J, > /c,,~, the stresses are adjusted 
in order to maintain the requirement of (7), [13]. The adjusted stresses are as 
follows: 

(4 = (1 - EN6 + Me?, Cl@ 

where (0’) is the unadjusted stress vector, 

s = i(UT + (Jo + us), (4 = (1, 1, LO>, f = (4 - /%,2)/2&Z (17) 

in which (J, - ko2) represents the deviation from the yield surface. Finally, a 
stress point is in the unloading region if J, - k, 2 = 0 and l@ < 0, the stress rates 
are determined from the rate form of Hooke’s law (13), and the stresses are obtained 
using (15). 

(5) Step 1 is repeated to Cnd the new values of the accelerations and the 
procedure is repeated until the difference in the calculated values of ii and ti of 
the last two cycles is less than a given permissible error. If so, the time is incre- 
mented by At and steps 1 through 5 are repeated. 

p(t,r) 
I I I h-t 

f, 
R,-+ 

H~ ‘-RRb ----+ 

f 
H2 
I ! 

Surface Boundary 

Layer 1 (E,,c,,~l) 

I 
Layer It (E2, $,,v,) 

i 

l-----R”- 

FIG. 3. Partially loaded layered half space. 

Calculation of Stresses at Special Points 

The stresses of stress points on the horizontal surface boundary of a half space, 
Fig. 3, on the axis of symmetry, or on an interface between two layers, require 
special treatment different from those described in the above section. 

(a) Smface Boundary. For the horizontal surface in Fig. 3, the boundary 
conditions are: 

u = A4 r> 
! 

a--O <r < Rb; rTz = 0; 
z 0 . . . r 3 R,, . 08) 
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The following strain components of stress point g, Fig. 1, can be obtained: 

In the elastic range, the stresses may be obtained through (5); thus 

6, = [a, - 4% + %)I;(~ + +I, 

or = (A + 34 6, + 4% f 4, (20) 

(se = (A + 2/J) EfJ i- A(,, -f- E,), 

whereas in the plastic range, (8) can be used to determine the unknown stress 

rates c+~ and 6@ as foIIows: 

where pm,, are the coefficients of the matrix P in (8). The total stresses are then 
obtained by (15). 

1 ,--Surface Boundary 

FIG. 4. Strain-displacement relations on the axis of symmetry. 

(b) Axis of Symmetry. Strain-displacement relations for a point on the axis 
of symmetry such as point U, Fig. 4, are: 

Then caicuiation of the stresses in the elastic, plastic, and urdoading ranges 
proceed as described for an intermediate stress point. 
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+--&r------d 

FIG. 5. Boundary conditions at an interface between two layers. 

(c) Interface between two layers. Figure 5 shows an interface between two 
layers of material A and B. Assuming that the layers are in “welded contact” [2], 
the boundary conditions to be satisfied are 

% A- - u,B; Wl A = wB 

(u,a)A = (u,“)“; (7-g” &Q? (23) 

The radial and tangential strains at stress point a, Fig. 5, can be obtained directly. 

ET a = (ul i u2)/Ar; ega = u,lr, . (24) 

In the elastic range the stresses (T, in the two layers at the interface are expressed 
by (5). Equating uSA and oSB, a relation between •~4 and ezB is obtained: 

% A = [@B + &b>/@A + 2PA)l EBB + [& - hA)i(hA + %A)](% + de (25) 

Moreover, from Fig. 5, the total elongation at stress point.a may be expressed as 

w4 - W3 = (AzAE/ f ~ZBE,~)/~. (26) 

Solving (25) and (26) for czA and eSB, 

where 

% 
A- 

- Xl% + X+2(% i d 

EBB = (1 + m-1) E, - ?K--1~.7;A, 
(27) 

E - 2(% - ‘%)/&A + W, z- 

x1 = (l + m)(hB + 2~B)/b%hA + &A) + (b + +B)], 

x2 = m& ,- hA)/[m@A + 2pA) + & + &d], 
cw 

m = AzB/AzA . 
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FG. 6. Shear strain at a stress point on an interface. 

Consequently, from (5), expressions for ,the diagonal components of the stress 
tensor at point u can be obtained. It may be observed that the radial and tangential 
stresses are discontinuous at an interface; however, for calculating the accelerations 
of the mass points at an interface, these stresses are averaged as follows: 

u). = [u,.A f ma,“]/(l -f m); ug = [cJoA + mu,“]i( 1 - PI). 129) 

Equating the shear stresses in the two layers at the material interface yields 

where 

in which (Zu/&z),, and (G?u/~z)~ are as defined in Fig. 6. 

Combining (31) and (32), 

where yV3 = ?u/& -1. Zw/&, or, from Fig. 6, 

yrz = P(u, - u,)j(dz, -I- Llzg)] -: [(WI - w,)/Llr]. 

(3 1) 

(32) 

(33) 

(34) 
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Observing that for small displacements, dz, * ol,, = LIZ, * xB, that is, (Ye = maB , 
then (30) and (33) yield 

7,., = K1 -+ m> ~ApBl(wA + pdl yTz . (35) 

In the plastic range, the stress-strain rates relationship is expressed by (8). At 
an interface kzA = bzB; thus, using this condition with (8), (27), (33), and (34), 
the following equation for dr, and isA is obtained: 

where 

D,i, A -b D&,., = D, , 

D, = pi3 -t m-‘p& , D, = p& -I- m-‘lp& , 

(36) 

(37) 
4 = (P& - p;t,> gr i- (~2”~ -P&> ce + (1 + m-9 pf33a -I- (P& -P&I -i,., , 

and i, , ’ +, , eB and y,.z are given by the rate form of (24), (28), and (34). Considering 
next the shear stress rate at the interface, +& = +fz ; then, using (8), the rate form 
of (27), and (34), a second equation in &:a and i,” is obtained: 

where 

D,CzA + D,& = D, , (38) 

D, = D, , D5 = pi, -t- m- ‘p,” , 
(39) 

D, = <pF4 - P,“,> iT + (P& - P&> i, f- (1 + m-l> P& iz + (pf” - P$ P,, . 

From (36) and (38) 

GA = (WA - 44YVW, - W,), 
(40) 

&!, z (DID, - &QW’,&, - 44). 

Consequently, all the strain rates are defined, using (8) the stress rates can be 
determined, and the total stresses are obtained by (15). Again, the radial and 
tangential stress rates are averaged, as in (29), for the purpose of calculating the 
accelerations at the interface mass points. 

Since unloading is assumed to follow the rate form of Hooke’s law, the stress 
rates at the interface can be obtained directly as the time derivative of the corre- 
sponding stresses derived for the elastic range. 

5. COWERGENCE AND STABILITY OF THE NUMERICAL SCHEME 

This section is concerned with the conditions that must be satisfied in order to 
assure that the solution of the equations of motion, which are central finite 
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difference equations, is a reasonably accurate and valid approximation to the 
solution of the corresponding system of hyperbolic partial differential equations. 
Such conditions have been established for some linear hyperbolic systems of 
difference equations [14, 15, 16, 17, 181. 

The method developed by von Neumann [19] and discussed in detail by O’Brien, 
Hyman and Kaplan [20] is followed in the analysis of the stability of the numerical 
scheme used herein. Essentially, the method expresses the errors of a solution in 
terms of a finite Fourier series. The behavior of the error is then examined as time 
increases such that at t = 0, the errors reduce to the given series. 

Denoting the errors at the mesh points along t -. 0 and the domain 0 5: r -:; Ndr, 
and, 0 < z -5 MAz by E(pdr, (742) or E,,, , where p = (i .- 1),/2, for i .-F 1: 2: . . . . 
2M -I- 1, and CJ = (j .- I)j2, forl L 1: 2 ,..., 2%’ -‘- I; it is possible to express the 
error in the displacement components as follows: 

.v M 
E A,,,, exp[Zn,p dr -:- fPnLq AL] (41) 

in which I- d - 1, A,, arc constant coefficients, N and /3 are frequencies that 
can be chosen arbitrarily. Since the system of equations under consideration 
(equations of motion), are linear difrerence equations, superposition applies; 
hence, only one term of (41) needs to be considered. The coefficients A,,, , being 
constants, can be ncglectcd. Therefore, for t = z,dt J> 0, 

J%Lu*z = exp[Z(npdr -I- /Iqdz) T lot] 

= 7~” . exp[Z(zpLlr !- /3qOz)], (42) 

where 77 = exp(yAt). 
Equation (42) shows clearly that the error E,,,,,. will not increase with time if 

irll ~‘1. 
The equations of motion derived using the model in terms of the displacement 

components u and w can be obtained from (3). Denoting the coordinates of point 1 
by (i,.j), the first of (3) yields 

[iit = [(A + 2p)/dr2][u(i - 2, j, k) - 2u(i, j, k) -I- u(i - 2, j, k)] 

$ [(A + 2~)/pdr2][u(i -1 I, j, k) - u(i - I, j, k)] 

- [(A + ~pYp2~~21[4i,j, 41 
I (p/dz2)[u(i,j --- 2, k) - 2u(i,,j, k) -F u(i,j -i- 2, k)] 

f [(A ;- p)/drdz][w(i -k 1,j -i- 1, k) - w(i - 1,j + 1, k) 

- w(i f 1, j - 1, k) -I- w(i - 1, j - 1, kf]. (43) 
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Equating the real and imaginary parts of the right sides of (47) and (48), one gets 

(sin aLlr/2)2 7 (Llr(dz)‘(sin /3Llz/2)’ .-. (1 - v)/2p’ (45) 

and 
sin(:uLlr/2) : (Llrjdz) sin@lz;2). (50) 

Substituting either of (49) or (50) in (47) or (48) yields an equation of the form: 

r12 - 2$ .:L 1 -- 0. (j!) 

Therefore, 

7l -- B + (B2 - I)““. (52) 

1.8 

1.6 

0.8 

0.4 
0 0.2 0.4 0.6 0.8 1.0 

K 

FIG. 7. Modulus of 7 vs. K for p = 1 .O. 

-1.00 

.- 
Y 

” 
22 
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t 
h -0.25 

- 0 IO 
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Time (m. sec.) 

FIG. 8. Directly induced blast pressure pulse. 
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The largest absolute value of 77 is obtained if B is of maximum modulus. It can 
be shown that substituting (50) in (48) yields the maximum modulus of B; 
specifically, in this case, 

where 

B = (1 - 2~~ sin2@dzj2)) -I- Z(UK~ sin(/?dz/2))/2p, (53) 

K2 = 2(~!it/dZ)~ Cd2 and u = (AZ/At-) < 1, (54) 

cd being the dilatational wave speed. For large radii, that is, as p + co, it can be 
shown that 1 q 1 < 1.0, that is, the difference scheme is stable for 

At <Aziqzcd, (55) 

which is also the stability criterion of plane wave motion [13]. 
The absolute value of 7 was evaluated numerically from (52) and (53) for 

p = 1.0 and for different values of K and a. Figure 7 shows that one of the roots 
of (52) is greater than 1, indicating local instability in the neighborhood of the 
axis of symmetry. An approximate stability condition may be obtained by observing 
that, from Fig. 7 for K < 0.5 and a < 0.5 (a -: 1.0 being the worst case), j q is 
not much larger than 1. Thus, an appropriate condition may be stated as 

At < Az/3c, . (56) 

An elastic homogeneous half space is used for the purpose of studying the effect 
of mesh sizes on the behavior of the numerical solutions. The right side of the 

- 1.4 

- 1.2 

- 1.0 

0.4 

/.- A t=3.0 ms, 

I I 

Applied Pressure 

I I 1 
0 20 

AZ = 5 ft. 

Ar = IO ft. 

cd = 19.3 in/m.s. 

c, = 11.8 in/m.s. 

I 
,-At=2.5m.s. 

Time (m. sec.) 

FIG. 9. History of vertical stresses at 2 = 10 ft (axis of symmetry). 
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@ Ar=12’,Az=6’,At=K,m.s. 

@ Arq8’,A z=4’,At= 1.0 m.s. 

@Ar=6’,Az=3’,At=0.75m.s. 

Time (m. sec.) 

FIG. 10. History of vertical stresses, R = 0, 2 = 12 ft. 

- 0.8 @Ar=la, Az=6: At=l.5 m.s. 

- 06 
@Ar=6’, Az=4’, At=l.Qm.s. 

@Ar=6’, Az=3’, At= 0.75 rn.5. 
- 0.4 

- 0.2 

0.0 

Time Cm. sec.) 

FIG. 11. History of vertical stresses, R = 12, Z = 12 ft. 

half space is assumed to be confined laterally while the bottom edge is provided 
with a transmitting boundary, Ang (private communication). Figure 3 shows the 
half space, and the pressure pulse is shown in Fig. 8. The material constants are 
chosen to be: 

E, = Ez - E3 =y 75 ksi, < = 150 lb,‘ft”, v = 0.2, 
cd == 1600 fps, c, = 980 fps, 

c, being the shear wave speed. The results are shown in Figs, 9-l 1. Figure 9 
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shows the history of vertical stresses at a point on the axis of symmetry; the 
solution is unstable for dt = 4.0, 3.0, and 2.5 msec, while dt = 1.0 msec does 
not show instability for reasonable calculation times. The practical stability 
condition given by (56) requires dt = 1.10 msec. Figures 10 and 11 provide an 
indication of the convergence of the solutions corresponding to decreasing mesh 
sizes, thus verifying the convergence of the numerical scheme presented herein. 

For rather long calculation times, p ereater than five times the width of the pressure 
pulse, instability of the solutions started to show clearly at points on the axis of 
symmetry, especially those situated on the layers interfaces. In order to get around 
this difficulty, linear artificial viscosity terms are introduced into the equations of 
motion (4): 

(57) 

where 
n. 

qT= jrc,dr $-, 
( 1 

q1=iycd4z g, 
i 1 , 

in which Y is a dimensionless viscosity coefficient. Values of I’ ranging from 
0.2-0.6 proved to be suitable for the present investigation. As a consequence of 
(57), the accelerations ii, and tir derived from (3): Fig. 1, must be modified as 
follows: 

pdt ~.~ p-a 1 1 i- 62, , &tdt _ Zij’t+dt _;. szij 1 1 1' 

where ii,’ and ti,’ arc the unmodified accelerations, and 

(59) 

St& = .F(tizt - 2titt + tiit) c,Jdr, 

SziJ = r(f&t - 2ti,t + z&t) c,/dz. 
(60) 

It was observed that, the artificial viscosity terms q, and qz as introduced in (57) 
made the numerical scheme conditionally stable; see Appendix. The artificial 
viscosity terms, however, did not alter the significant features of the solutions. 

6. SPECIFIC PROBLEMS 

Numerical solutions for two specific problems are presented and discussed. 
Both problems are concerned with stress wave propagation in elastic-plastic 
layered half spaces subjected to applied pressures on the surface boundary as 
shown in Fig. 3. 
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Wave Motion in a Layered Solid Medium Induced by a Blast Loading 

The blast pressure pulse is shown in Fig. 8. The half space considered is like 
that in Fig. 3 (where the right edge is confined laterally), with HI = 50 ft, 
Hz = 90 ft, and R1, = 80 ft. The material constants of the different layers are: 

El = 154 ksi, E, = 888 ksi, E, = 2465 ksi, 

% = 2500 fps, cd, = 600 fps, cd, = 10000 fps, 

5 = 140 lb/fP, v = 0.26, k,, = 0.15 ksi, k,, = 0.30 ksi, 

and the thid layer is assumed to remain elastic. The space and time meshes used 
are: 

AZ, = 25 ft, AZ, = 30 ft, AZ, = 40 ft, 

AP = 40 ft, At = 0.75 msec. 

The results are summarized in Figs. 12 through 15. They generally indicate that 
plastic yielding of the softer top layer led to higher magnitudes of displacements 
and lower magnitudes of stresses than those of the corresponding elastic material, 
as should be expected. Figure 13 shows that the elastic vertical stresses at a point 
on the first material interface oscillate as a result of reflections from the surface 
and the second material interface. These ocillations occur also at the second 
interface; however, these latter oscillations are not as severe, since there are no 
reflections from the transmitting boundary. A space plot of the variation of the 
maximum vertical displacements, velocities, and accelerations with depth is 
shown in Fig. 15. 

A Layered Half Space Subjected to Sinusoidal Loading 

A continuously applied sinusoidal pressure pulse of amplitude 1.0 ksi and 
period 120 msec is assumed to be acting on the above layered half space with the 
same space and time mesh sizes. Assuming that tensile loading is admissible, 
Figs. 16 and 17 show the history of vertical displacements and stresses. 

7. CONCLUSIONS 

The mathematical analysis of wave motion in layered elastic-plastic half spaces 
is a difficult problem. A discrete-variable approach proves to be feasible. The 
lumped parameter model described herein provides a powerful tool for formulating 
a numerical solution, which is highly adaptable to electronic computations, from 
the simple principles of mechanics. 
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The resulting numerical scheme is essentially unstable for the axisymmetric 
case, because of local instabilities in the neighborhood of the axis of symmetry. 
Such instability starts to show in the numerical solution only after long calculation 
times (5-6 times the width of the pressure pulse). 

APPENDIX. EFFECT OF ARTIFICIAL VISCOSITY ON STABILITY 
OF TIIE DIFFERENCE SCHEME 

It was observed earlier that in view of the results shown in Fig. 7, the differencing 
scheme is unstable for axisymmetric calculations. It will be shown that the same 
scheme becomes conditionally stable if artificial viscosity terms are added as in (57). 

From (14) and (44), the velocities tit and zi? are expressed as follows: 

tit E (&Al - u-)/,2&, and ztt = (,p‘?t - ,v’-“t)/!2dt (61) 

Consequently, the additional term to be added to the right side of (43) is 

8q, __ = jTc,[{u(i -!- 2, j, k /- 1) - 2rr(i, j, k -I- 1) .-i- u(i - 2, j, k T 111 El 
- [tl(i $ 2, j, k - 1) -.-- 2u(i,j, k -- 1) $ ~(i - 2, j, k -- 1))]/24t LIP. 

(62) 
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K 

FIG. 18. Modulus of7 vs. K forp = 1.0, sin @AZ/;? = 1.0. 
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FIG. 19. Modulus of 7 vs. K for p = 1.0, sin ,sOz[Z = 0.5. 

Therefore, (47) is modified by the following additional term appearing on the 
right-hand side 

Similarly, the right-hand side of (48) is modified by the term 

2(rp - 5-j) - {Tc, sin2(/3Llz/2)/d tA.2. (64) 

The resulting equations, derived from (47) and (48) by the addition of the above 
terms (63) and (64), can then be written as follows: 

&f - 2$3, + C, = 0, (65) 

respectively, where Al , AZ ,..., are coefficients that can be derived through lengthy 
substitutions. Choosing, p = 1.0 and Ar = AZ which happened to give larger 
values of ) 7 1, Fig. 7, and, without any loss of generality, taking the frequencies 0: 
and /3 to be equal, the coefficients in (65) and (66) can be greatly simplified. Once 
more it can be easily found that I B, 1 > 1 Bl 1; hence the maximum modulus of 7) 
is obtained from (66) which can be expressed as 

T2 -27B+C=O, (67) 
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in which K and r are as defined before, and 0 = rAri2 T- PAZ/~. 
For sin B = 0, it is clear that i 7 ! -7 I ; hence the absolute values of the roots 

of (67) are evaluated numerically for sin ~9 = 0.5 and 1.0 respectively. The resu!ts 
are shown in Figs. 18 and 19. They show clearly that, by using artificial viscosity, 
the numerical scheme can be made conditionally stable. Since the purpose of 
artificial viscosity is to insure stability of the scheme without sacrificing the 
accuracy of the results, then, whenever possible, a smaller value of r should be 
used in the calculations. It may also be observed that the stability criterion used 
in this study At :< Az/3c,, which is equivalent to K ::-; 0.47, proved to be quite 
adequate with artificial viscosity coefficients r varying from 0.20 to 0.60. 
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